Cupping and definability in the local structure of the enumeration degrees

نویسندگان

  • Hristo Ganchev
  • Mariya Ivanova Soskova
چکیده

We show that every splitting of 0e in the local structure of the enumeration degrees, Ge, contains at least one low-cuppable member. We apply this new structural property to show that the classes of all K-pairs in Ge, all downwards properly Σ2 enumeration degrees and all upwards properly Σ2 enumeration degrees are first order definable in Ge.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splitting and nonsplitting in the Σ20 enumeration degrees

This paper continues the project, initiated in [ACK], of describing general conditions under which relative splittings are derivable in the local structure of the enumeration degrees, for which the Ershov hierarchy provides an informative setting. The main results below include a proof that any high total e-degree below 0′ e is splittable over any low e-degree below it, a non-cupping result in ...

متن کامل

The high/low hierarchy in the local structure of the ω-enumeration degrees

This paper gives two definability results in the local theory of the ω-enumeration degrees. First we prove that the local structure of the enumeration degrees is first order definable as a substructure of the ω-enumeration degrees. Our second result is the definability of the the classes Hn and Ln of the highn and lown ω-enumeration degrees. This allows us to deduce that the first order theory ...

متن کامل

The limitations of cupping in the local structure of the enumeration degrees

We prove that a sequence of sets containing representatives of cupping partners for every nonzero ∆2 enumeration degree cannot have a ∆ 0 2 enumeration. We also prove that no subclass of the Σ 2 enumeration degrees containing the nonzero 3-c.e. enumeration degrees can be cupped to 0e by a single incomplete Σ 2 enumeration degree.

متن کامل

Definability via Kalimullin Pairs in the Structure of the Enumeration Degrees

We give an alternative definition of the enumeration jump operator. We prove that the class of total enumeration degrees and the class of low enumeration degrees are first order definable in the local structure of the enumeration degrees.

متن کامل

Kalimullin Pairs of Σ2 Ω-enumeration Degrees

We study the notion of K-pairs in the local structure of the ωenumeration degrees. We introduce the notion of super almost zero sequences and investigate their structural properties. The study of degree structures has been one of the central themes in computability theory. Although the main focus has been on the structure of the Turing degrees and its local substructure, of the degrees below th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Log.

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2012